1

Review Notes for Linear Algebra – True or False

Chapter 2 [Matrix Algebra]

2.1 If A is a square matrix and $A^2 = I$, then A = I or A = -I.

- 2.2 If AB = O, then A = O or B = O.
- 2.3 If \mathbf{A} , \mathbf{B} , \mathbf{C} are square and $\mathbf{ABC} = \mathbf{O}$, then one of them is \mathbf{O} .
- 2.4 If AB = AC, then B = C.
- 2.5 If A is nonzero and AB = AC, then B = C.
- 2.6 The square of a nonzero square matrix must be a nonzero matrix.
- 2.7 If AB = BA, then $(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$.
 - $\mathbf{True.} \quad (\mathbf{A} + \mathbf{B})^3 = (\mathbf{A} + \mathbf{B})(\mathbf{A}^2 + \mathbf{AB} + \mathbf{BA} + \mathbf{B}^2) = \mathbf{A}^3 + \mathbf{A}^2\mathbf{B} + \mathbf{ABA} + \mathbf{AB}^2 + \mathbf{BAB} + \mathbf{B}^2\mathbf{A} + \mathbf{B}^3 = \mathbf{A}^3 + \mathbf{A}^2\mathbf{B} + \mathbf{A}^2\mathbf{B} + \mathbf{AB}^2 + \mathbf{AB}^2 + \mathbf{AB}^2 + \mathbf{B}^3 = \mathbf{A}^3 + 3\mathbf{A}^2\mathbf{B} + 3\mathbf{AB}^2 + \mathbf{B}^3.$
- 2.8 An invertible matrix must be a square matrix.

True. A is invertible $\iff AB = BA = I$ for some B. If A is $m \times n$ and B is $n \times m$, then we must have m = n.

2.9 A non-square matrix can never be invertible.

True. Equivalent to 2.8.

2.10 If A has a zero row or a zero column, then A is not invertible.

True. A has zero determinant and hence not invertible.

2.11 If A is a square matrix which has no zero rows, then A is invertible.

False. A may have a zero column. Then A is not invertible.

2.12 Let A, B be invertible matrices of same size. Then AB is also invertible.

True. **AB** is defined and square. $\det(\mathbf{AB}) = (\det \mathbf{A})(\det \mathbf{B}) \neq 0$.

Last Updated: January 22, 2010

False. $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

False. $\mathbf{A} = \mathbf{B} = \mathbf{C} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

False. $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}.$

 $\label{eq:False} \textbf{False}. \quad \textbf{Choose } \mathbf{B} \neq \mathbf{C} \text{ and } \mathbf{A} = \mathbf{O}.$

False. $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$

False. $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$

2.13 Let \mathbf{A} , \mathbf{B} be invertible matrices of same size. Then $\mathbf{A} + \mathbf{B}$ is also invertible.

False. Let A invertible. Choose $\mathbf{B} = -\mathbf{A}$ so that B is invertible. But then $\mathbf{A} + \mathbf{B} = \mathbf{O}$ is not invertible.

2.14 If **AB** is equal to the identity matrix, then **A** must be an invertible matrix.

False. Choose **A**, **B** non-square such as $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$.

2.15 A, B are square matrices. If AB = I, then BA = I. Hence, A is invertible.

 ${\bf True.}$ We prove it by contradiction. In the following proof,

we need so-called elementary matrices \mathbf{E}_i , for instance, like $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$. In this case, these three matrices correspond to the elementary row operations $R_2 \leftrightarrow R_3$, $-6R_2$, $-4R_1 + R_3$, respectively. In general, each row operation always has a corresponding elementary matrix which is also invertible. So, if \mathbf{A} is row equivalent to \mathbf{B} by doing some row operations to \mathbf{A} , then we also mean $\mathbf{B} = \mathbf{E}_s \cdots \mathbf{E}_2 \mathbf{E}_1 \mathbf{A}$ for some invertible $\mathbf{E}_1, \mathbf{E}_2, \cdots, \mathbf{E}_s$.

<u>Proof</u>: Suppose the square matrix **A** is not invertible. Then **A** is not row equivalent to $\mathbf{I} \implies$ the row echelon form of **A** must have a zero row $\implies \mathbf{E}_s \cdots \mathbf{E}_2 \mathbf{E}_1 \mathbf{A}$ has a zero row $\implies \mathbf{E}_s \cdots \mathbf{E}_2 \mathbf{E}_1 \mathbf{A} \mathbf{B} = \mathbf{E}_s \cdots \mathbf{E}_2 \mathbf{E}_1 =$ invertible matrix also has a zero row \implies a contradiction. This proves **A** must be invertible and hence $\mathbf{B}\mathbf{A} = \mathbf{I}$.

2.16 For square matrix \mathbf{A} , $\mathbf{A}\mathbf{A}^t = \mathbf{I}$ if and only if $\mathbf{A}^t\mathbf{A} = \mathbf{I}$.

 $\mathbf{True.} \quad \mathrm{If} \ \mathbf{A}, \ \mathbf{B} \ \mathrm{are \ square \ matrices}, \ \mathrm{by} \ 2.15, \ \mathrm{then} \ \mathbf{AB} = \mathbf{I} \iff \mathbf{BA} = \mathbf{I}.$

 $2.17~{\rm If}~{\bf AB}$ is invertible, then ${\bf BA}$ is invertible.

False. Take A, B in 2.14. Then AB = I but BA has a zero row and hence not invertible.

2.18 If $\mathbf{A}^2 \neq \mathbf{O}$, then \mathbf{A} is invertible.

False.
$$\mathbf{A} = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$$
. $\mathbf{A}^2 \neq \mathbf{O}$ but \mathbf{A} not invertible (det $\mathbf{A} = 0$).

2.19 If **A** is invertible, then $\mathbf{A}^2 \neq \mathbf{O}$.

True. Prove by contradiction. Suppose $\mathbf{A}^2 = \mathbf{O}$. Then det $\mathbf{A}^2 = \det \mathbf{O} = 0$. Because det $\mathbf{A}^2 = (\det \mathbf{A})^2$ and hence det $\mathbf{A} = 0$ and \mathbf{A} is not invertible.

2.20 If A is a square matrix and $A^2 + 7A - I = O$, then A is invertible.

True. A is square and $A(A + 7I) = I \implies A^{-1} = A + 7I$, by 2.15.

2.21 A symmetric matrix must be a square matrix.

True. If **A** is an $m \times n$ matrix, then \mathbf{A}^t is $n \times m$. If, furthermore, **A** is symmetric, then by definition, $\mathbf{A}^t = \mathbf{A}$ which implies that m = n. Otherwise, they won't have the same size.

2.22 If A is symmetric, so are A^{-1} (if exists) and A^3 .

True. A symmetric $\iff \mathbf{A}^t = \mathbf{A}$. Then $(\mathbf{A}^{-1})^t = (\mathbf{A}^t)^{-1} = \mathbf{A}^{-1}$ and $(\mathbf{A}^3)^t = (\mathbf{A}^t)^3 = \mathbf{A}^3$.

2.23 If $\mathbf{B} = \mathbf{A}^t \mathbf{A}$, then 2**B** is symmetric.

True.
$$(2\mathbf{B})^t = 2\mathbf{B}^t = 2(\mathbf{A}^t\mathbf{A})^t = 2\mathbf{A}^t(\mathbf{A}^t)^t = 2\mathbf{A}^t\mathbf{A} = 2\mathbf{B}^t$$

2.24 If A is symmetric, so is f(A), for any polynomial f(x).

True. By definition, **A** symmetric $\iff \mathbf{A}^t = \mathbf{A}$. In general we also have $(\mathbf{A} + \mathbf{B})^t = \mathbf{A}^t + \mathbf{B}^t$ and $(c\mathbf{A})^t = c\mathbf{A}^t$. Hence, if **A** is symmetric, then for any polynomial f(x), the transpose of $f(\mathbf{A})$ must equal to $f(\mathbf{A})$ itself. Hence, $f(\mathbf{A})$ is symmetric.

2.25 det $(\mathbf{A} + \mathbf{B}) = \det \mathbf{A} + \det \mathbf{B}$.

False.
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.

2.26 det $(k\mathbf{A}) = k \cdot \det \mathbf{A}$, for any integer k.

False.
$$\mathbf{A} = \mathbf{I}$$
. Then det $\mathbf{A} = 1$, det $(2\mathbf{A}) = \det \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 4 \neq 2 \cdot \det \mathbf{A}$.

2.27 det $\mathbf{A}^t = (-1) \det \mathbf{A}$.

False. $\mathbf{A} = \mathbf{I}$. Then $\mathbf{A}^t = \mathbf{A}$.

2.28 Three elementary row operations do not change the determinant of a square matrix.

False. (1) If **B** is obtained from **A** by interchanging any two rows of **A**, then det $\mathbf{B} = -\det \mathbf{A}$. (2) If **B** is obtained from **A** by multiplying a row of **A** by k, then det $\mathbf{B} = k \cdot \det \mathbf{A}$.

2.29 A row replacement operation does not change the determinant of a matrix.

True. Let **A** be a square matrix. (1) If a multiple of one row of **A** is added to another row to produce a matrix **B**, then det **B** = det **A**. (2) If two rows of **A** are interchanged to produce **B**, then det **B** = $-\det \mathbf{A}$. (3) If one row of **A** is multiplied by k to produce **B**, then det **B** = $k \cdot \det \mathbf{A}$.

2.30 If A is row equivalent to B, then $\det A = \det B$.

False.
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. Then $\mathbf{A} \to \mathbf{I}$, and det $\mathbf{A} = -2 \neq 1$.

- 2.31 If **A** is row equivalent to **B**, then det **A** and det **B** are either both zero or both nonzero. **True**. If **B** is obtained from **A** by either one of the three elementary row operations, then det $\mathbf{B} = k \cdot \det \mathbf{A}$, where $k \neq 0$.
- 2.32 The determinant of a triangular matrix is the sum of the entries on the main diagonal.

False. $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Then det $\mathbf{A} = 1$. The correct statement should be: The determinant of a (lower or upper) triangular matrix is the *product* of the entries on the diagonal.

2.33 Let \mathbf{A} be a square matrix without zero rows and columns. Then \mathbf{A} must be row equivalent to the identity matrix of same size.

False.
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.$$

2.34 If **A**, **B** are nonzero square matrices and **A** is row equivalent to **B**, then both **A**, **B** are invertible. False. $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.$

2.35 If \mathbf{A} is an invertible matrix and \mathbf{B} is row equivalent to \mathbf{A} , then \mathbf{B} is also invertible.

True. 2.31 shows that, if **A** is row equivalent to **B**, then their determinants are both zero or both nonzero. Thus, **A** is invertible \implies det $\mathbf{A} \neq \mathbf{0} \implies$ det $\mathbf{B} \neq \mathbf{0} \implies$ **B** is invertible.