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Chapter 6 Mathematical Expectation / Expected Value (M%)

One of the most important concepts in probability theory is that of the expectation of a
random variable. The expectation of X is called the mean and is usually denoted by 4 ; it
indicates the “center” of the probability distribution in the sense of a center of gravity. The
expected value of (X — y)?is called the invariance, and is denoted by o? . Its positive

square root o is called the standard deviation. For most common distributions, the interval
(1 — 30, u +30) contains almost all of the probability.

Definition 6.1: If X is a discrete random variable having a probability density function f(x),
the expectation or the expected value of X, denoted by E(X), is defined by

E(X) = Z x f(x), where f(x) =P(X =x), |=Image(X).
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In words, the expected valued of X is a weighted average (or mean) of the possible
values that X can take on, each value being weighted by the probability that X assumes it. For
example, if the probability density function of X is given by

f(0) = (1) = 1/2,
then E(X)=0(1/2) +1(1/2) =1/2 is just the ordinary average of the two possible values
0 and 1 that X can assume. On the other hand, if

f(0) = 1/3, f(1) = 2/3,
then E(X)=0(1/3) +1(2/3) =2/3 is aweighted average of the two possible values 0 and
1, where the value 1 is given twice as much weight as the value 0, since f(1) = 2 f(0).

Exercise 6.2 :  Find E(X) where X is the outcome when we roll a fair die.

Exercise 6.3 : Let X be the maximum numbers on the dice when 3 fair dice are rolled.
Evaluate the expectation E(X).



MTH3105/MTH4105 Probability Chapter 6 Mathematical Expectation

Exercise 6.4 : An urn contains 3 white, 4 blue, 6 red and 4 black balls. Four balls are
randomly selected by a player from the urn. The player will win 1 dollar if each white ball is
selected; win 50cents if each blue ball is selected; and lose 1.5 dollars if each red ball is
selected. Let X be the amount of money of the player.

(i) What is the image of X, i.e., I = Image(X) ?

(if) For each of the elementain I, find P(X = a).
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(iii) Find the expectation E(X).

Example 6.5 : If X is a binomial random variable with parameters n and p, compute its
expectation.
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Definition 6.6 : If X is a continuous random variable having a probability density function
f(x), the expectation or the expected value of X, denoted by E(X), is defined by

E(X) = f;xf(x)dx.

Exercise 6.7 : Let X be uniformly distributed over the interval (a, b). Find the expectation
of X.

Example 6.8 : Find the expectation of X when X is a normal random variable with
parameters ¢ and o.
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Definition 6.9 : If X is a random variable with expected value 1, then the variance of X is
defined (for any type of random variable) by

Var(X) =E( (X -)?).
Standard deviation is the positive square root of the variance.

Remark. Var(X) = E(X?) - (E(X))%
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Example 6.10 : Find the variance of X if X ~ Bin(n, p).

Proof : E(X?) = Zn:iZC”pi(l p)"™
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Example 6.11 : Find the variance of X if X ~N(g, o).

Proof : Var(X) E((X-u)?)
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Exercise 6.12 : Repeat Exercise 6.4 and find the variance of X, Var(X).

Exercise 6.13 :  An urn contains 3 white, 3 red and 5 black balls. Three balls are randomly
selected by a player from the urn. The player will win 1 dollar if each white ball is selected
and will lose 1 dollar if each red ball is selected. Let X denote the amount of money that the
player has earned. Find (i) E(X), (i)  Var(X).



